Thermodynamics

Thermodynamic data

Thermochemical data sources

Books and selected journal papers

В.П. Глушко, Л.В. Гурвич, Термодинамическкие свойства индивидуальных веществ (Thermodynamic properties of individual substances)

В.П. Глушко, Л.В. Гурвич, Термодинамическкие свойства индивидуальных веществ, в 4 томах (8 книг) издательство "Наука", Москва 1978-1982

Таблицы и полиномы для интерполяции.

  • Том 1: Соединения O, H(D,T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P

  • Том 2: Соединения C, Si, Ge,Sn, Pb

  • Том 3: Соединения B, Al, Ga, In, Tl, Be, Mg, Ca, Sr, Ba

  • Том 4: Соединения Cr, Mo, W,V, Nb, Ta, Ti,Zr,Hf, Sc, Y, La, Th, U, Pu, Li, Na, K, Rb, Sc

I. Barin, Thermochemical Data of Pure Substances

Websites

NIST-JANAF Thermochemical Tables

https://janaf.nist.gov/

DOI:10.18434/T42S31

Термодинамическкие свойства индивидуальных веществ (Thermodynamic properties of individual substances)

Web version of Volumes 5 and 6 of "Thermodynamic properties of individual substances" by Gurvich et.al. http://www.chem.msu.su/rus/tsiv/welcome.html

384 compounds of Zn, Cu, Fe, Co, Ni, Mn, Cr, V

NIST

https://webbook.nist.gov/

FREED

http://www.thermart.net/freed-thermodynamic-database/

Journals and document collections

CALPHAD

https://www.sciencedirect.com/journal/calphad

OSTI.GOV U.S. Department of Energy Office of Scientific and Technical Information

https://www.osti.gov/

International Journal of Thermophysics: Journal of Thermophysical Properties and Thermophysics and Its Applications

https://www.springer.com/journal/10765/

Thermochimica Acta

https://www.sciencedirect.com/journal/thermochimica-acta

The Journal of Chemical Thermodynamics

https://www.sciencedirect.com/journal/the-journal-of-chemical-thermodynamics

Journal of Thermal Analysis and Calorimetry

https://www.springer.com/journal/10973

Computational and Theoretical Chemistry

https://www.sciencedirect.com/journal/computational-and-theoretical-chemistry

Журнал физической химии ( Russian Journal of Physical Chemistry A)

Original version: https://sciencejournals.ru/journal/fizkhim/

https://www.elibrary.ru/contents.asp?titleid=7802

English translation: https://www.springer.com/journal/11504

Теплофизика высоких температур

https://sciencejournals.ru/journal/teplofiz/ http://www.mathnet.ru/php/journal.phtml?jrnid=tvt&option_lang=rus https://www.springer.com/journal/10740

Journal of Phase Equilibria

https://link.springer.com/journal/12385/volumes-and-issues

Journal of Phase Equilibria and Diffusion (JPED)

https://www.springer.com/journal/11669

Precursor for chemical vapor deposition. Properties.

123456789101112131415161718
HHe
LiBeBCNOFNe
NaMgAlSiPSClAr
KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe
CsBaHfTaWReOsIrPtAuHgTlPbBiPoAtRn
FrRaRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaCePrNdPmSmEuGdTbDyHoErTmYbLu
AcThPaUNpPuAmCmBkCfEsFmMdNoLr

Halide precursors

Aluminum Chloride AlCl3

  • Melting point: 192.6°C

  • Boiling point: 182.7°C (sublimes)

  • Condensed phase density: 2.44 g/cm3 (at 25°C)

  • Molar mass: 133.34 g/mol

AlCl<sub>3</sub> saturated vapor pressure

Aluminum Tribromide AlBr3

  • Melting point 98°C

  • Boiling point 255°C

  • Condensed phase density 3.01 g/cm3 (at 25°C)

  • Molar mass 266.69 g/mol

Aluminum Triiodide AlI3

  • Melting point 191°C

  • Boiling point 382°C

  • Condensed phase density 3.98g/cm3 (at 25°C)

  • Molar mass 407.69 g/mol

Aluminum chlorination

Aluminum chlorination products

Aluminum chlorides can be produced inside a CVD reactor by passing dry hydrogen chloride (HCl) or Chlorine (Cl2) gas over a boat with aluminum pellets.

The composition of produced chlorides mainly depends on chlorination temperature --- at temperatures below 900°C aluminum trichloride AlCl3 and its dimer Al2Cl6 are the main reaction products. At higher temperatures, aluminum monochloride AlCl becomes dominant.

Halide precursors

Boron Trifluoride BF3

  • Melting point -128°C

  • Boiling point -100°C

  • Critical temperature -12.3°C

  • Critical pressure 4.99 MPa

  • Molar mass 67.81 g/mol

Boron Tricloride BCl3

  • Melting point -107°C

  • Boiling point 12.5°C

  • Critical temperature 178.8°C

  • Critical pressure 3.87 MPa

  • Molar mass 117.17 g/mol

BCl<sub>3</sub> saturated vapor pressure

Bibliography

  1. Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, doi:10.1021/ie50448a022.

Organic Precursors

Chromium Hexacarbonyl Cr(CO)6

  • CAS Registry Number: 13007-92-6

  • Molar mass: 220.0567 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. 1972
P = 10 ** (11.832 - 3755.2 / (T + 273.15))

Cr(CO)6 saturated vapor pressure

Bibliography

  1. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow Chemistry 1972. [in Russian]

Organic precursors

Dicobalt octacarbonyl Co2(CO)8

  • CAS Registry Number: 10210-68-1

  • Molar mass: 341.9472 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals.
P = 10 ** (17.6008 - 5120.6 / (T + 273.15))

Co2(CO)8 saturated vapor pressure

Bibliography

  1. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow Chemistry 1972. [in Russian]

Halide precursors

Gallium Trichloride GaCl3

  • Melting point: 78°C

  • Boiling point: 201°C

  • Condensed phase density: 2.47g/cm3 (at 25°C)

  • Molar mass: 176.08 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Pa
if  78 <= T <= 200:
  P = 10 ** (10.32 - 2511 / (T + 273.15))
if  50 <= T <= 78:
  P = 10 ** (14.00 - 3805 / (T + 273.15))

GaCl<sub>3</sub> saturated vapor pressure

Gallium Tribromide GaBr3

  • Melting point: 122°C

  • Boiling point: 279°C

  • Condensed phase density: 3.69g/cm3 (at 25°C)

  • Molar mass: 309.4g/mol

Gallium Triiodide GaI3

  • Melting point: 210°C

  • Boiling point: 346°C

  • Condensed phase density: 4.15g/cm3 (at 25°C)

  • Molar mass: 450.4g/mol

Metallic gallium chlorination

Gallium chlorides can be produced inside a reactor by passing dry hydrogen chloride (HCl) or Chlorine (Cl2) gas over a boat with liquid gallium. The composition of produced chlorides mainly depends on chlorination temperature --- at temperatures below ~350°C, Gallium trichloride GaCl3 and its dimer Ga2Cl6 are the main reaction products. At higher temperatures, gallium monochloride GaCl becomes dominant.

Bibliography

  1. Brunetti, B., Piacente, V., & Scardala, P. (2010). Vapor Pressures of Gallium Trifluoride, Trichloride, and Triiodide and Their Standard Sublimation Enthalpies. Journal of Chemical & Engineering Data, Vol. 55, No. 1, 2010

Halide precursors

Germanium tetrachloride GeCl4

GeCl<sub>4</sub> saturated vapor pressure

Halide precursors

Hafnium Tetrachloride HfCl4

  • Melting point 432°C (vapor pressure 44.4 atm)

  • Sublimation temperature 315°C (1 atm)

  • Condensed phase density 3.86 g/cm3 (at 25°C)

  • Molar mass 320.3 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Pa
# Thermochimica acta 244 (1994): 249-256.
if 125 <= T <= 227:
    P = 10 ** (13.64 - 5112/ (T + 273.15))

# P -- saturated  vapor pressure
# The Journal of Physical Chemistry, 62(3), 319-322.
if 190 <= T <= 400:
    P = 10**(11.712 - 5197.0/(T + 273.15))

HfCl<sub>4</sub> saturated vapor pressure

Hafnium Tetraiodide HfI4

  • CAS Registry Number: 13777-23-6

  • Molar mass: 686.11 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Stevenson, F. D., Wicks, C. E., & Block, F. E. (1963)
# gamma-solid
if 372 <= T <= 405:
  P = 10 ** (12.13 - 6173/(T + 273.15))
# beta-solid
if 325 <= T <= 372:
  P = 10 ** (13.97 - 7360/(T + 273.15))
# alpha-solid
if 302 <= T <= 324:
  P = 10 ** (19.56 - 10700/(T + 273.15))

HfI<sub>4</sub> saturated vapor pressure

Bibliography

  1. Stevenson, F. D., Wicks, C. E., & Block, F. E. (1963). Vapor pressure of tungsten (VI) chloride and hafnium (IV) iodide by a metal diaphragm technique (No. BM-RI-6367). Bureau of Mines, Albany, OR (USA). Albany Metallurgy Research Center.

  2. Tangri, R. P., and D. K. Bose. "Vapour pressure measurement of zirconium chloride and hafnium chloride by the transpiration technique." Thermochimica acta 244 (1994): 249-256.

  3. Palko, A. A., Ryon, A. D., & Kuhn, D. W. (1958). The vapor pressures of zirconium tetrachloride and hafnium tetrachloride. The Journal of Physical Chemistry, 62(3), 319-322.

Halide precursors

Indium trichloride InCl3

  • Molar mass 221,18 g/mol
  • Condensed phase density 3,46

InCl<sub>3</sub> saturated vapor pressure

  1. Tsirelnikov, V. I., Melnikov, P., & Nascimento, V. A. (2013). Vapor composition over solid indium trichloride and in indium chloride unsaturated vapor. Zeitschrift für anorganische und allgemeine Chemie, 639(10), 1840-1844.

  2. Karakaya, C., Ricote, S., Albin, D., Sánchez-Cortezón, E., Linares-Zea, B., & Kee, R. J. (2015). Thermogravimetric analysis of InCl3 sublimation at atmospheric pressure. Thermochimica Acta, 622, 55-63.

Halides

Iridium Hexafluoride IrF6

  • CAS Registry Number: 7783-75-7

  • Molar mass: 306.207 g/mol

  • Boiling point: 53.6°C

  • Triple point: 43.8°C, 518.8 Torr

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# J. Chem. Soc., 1961, 1563-1568

if 44 <= T <= 54:
  P = 10 ** (7.952 - 1656.5 / (T + 273.15))
if 0.4 <= T <= 44:
  P = 10 ** (8.618 - 1867.5 / (T + 273.15))
if -50 < T < 0.4:
  P = 10 ** (10.0 - 2245.7 / (T + 273.15))

IrF<sub>6</sub> saturated vapor pressure

Bibliography

  1. George H. Cady and George B. Hargreaces, The Vapour Pressures of Some Heavy Transition-metal Hexafluorides. J. Chem. Soc., 1961, 1563-1568 https://doi.org/10.1039/JR9610001563

Organic precursors

Iron pentacarbonyl Fe(CO)5

  • CAS Registry Number: 13463-40-6

  • Molar mass: 195.895 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals.
P = 10 ** (8.156 - 1988 / (T + 273.15))

Fe(CO)5 saturated vapor pressure

Bibliography

  1. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry, 1972.[in Russian]

Organic precursors

Manganese carbonyl Mn2(CO)10

  • CAS Registry Number: 10170-69-1

  • Molar mass: 389.98 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals.

P = 10 ** (11.523 -  3262.6/ (T + 273.15))

Mn2(CO)10 saturated vapor pressure

Bibliography

  1. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry, 1972.

Halide precursors

Molybdenum (V) Chloride (MoCl5)

  • CAS Registry Number 10241-05-1

  • Melting point 194°C

  • Boiling point 268°C

  • Condensed phase density 2.925 g/cm3 (at 25°C)

  • Molar mass 273.2 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, atm
# S. A. Shchukarev, A. V. Suvorov, Vestnik LGU, ser. khim, 1961 (4).
if 20 < T < 200:
  P = 10**(9.15-4750/(T+273.15))
if 200 < T < 268:
  P = 10**(5.536-3036/(T+273.15))

MoCl<sub>5</sub> saturated vapor pressure

Molybdenum (VI) Fluoride (MoF6)

  • CAS Registry Number 7783-77-9

  • Melting point: 17.5°C

  • Boiling point: 35°C

  • Triple point: 17.4°C, 398.1 Torr

  • Condensed phase density: 2.551 g/cm3 (at 25°C)

  • Molar mass: 209.95 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# O.Ruff, E.Ascher, ZAAC, 196, 1931, 413-420
if 20 < T < 80:
    P = 10 ** (-1394.9/(T+273.15)+7.407)

# J. Chem. Soc., 1961, 1563-1568
if -60 <= T <= -8.7:
    P = 10 ** (10.216 - 2166.6/(T+273.15))
if -8.7 <= T <= 17.4:
    P = 10 ** (8.533 - 1722.9/(T+273.15))
if 17.4 <= T <= 34:
    P = 10 **(7.766-1499/(T+273.15))

MoF6<sub>5</sub> saturated vapor pressure

Organic precursors

Molybdenum Hexacarbonyl (Mo(CO)6)

  • CAS Registry Number 13939-06-5

  • Melting point 148°C

  • Boiling point 155°C

  • Condensed phase density 1.96 g/cm3 (at 20°C)

  • Molar mass 264.02 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals.

if  55 <= T <= 145:
  P = 10 ** (11.7274 - 3788.32 / (T + 273.15))

Mo(CO)<sub>6</sub> saturated vapor pressure

Bibliography

  1. Shchukarev, S. A., & Suvorov, A. V. (1961). Thermodynamic Studies Of Chlorine Compounds Of Molybdenum And Tungsten. Vestnik LGU, ser. khim, (4).

  2. George H. Cady and George B. Hargreaces, The Vapour Pressures of Some Heavy Transition-metal Hexafluorides. J. Chem. Soc., 1961, 1563-1568 doi:10.1039/JR9610001563

  3. Otto Ruff and Ernst Ascher, "Einige Physikalische Konstanten von SiF4, WF6, and MoF6," Zeitschrift fur anorganische und allgemeine Chemie, 196, 413-420 (1931). doi:10.1002/zaac.19311960138

  4. V.G. Syrkin. Metal Carbonyls. Moscow, Chemistry, 1983. [in Russian]

  5. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry, 1972. [in Russian]

Organic precursors

Nickel tetracarbonyl Ni(CO)4

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals.
P = 10 ** (7.755 - 1588 / (T + 273.15))

Ni(CO)4 saturated vapor pressure

Bibliography

  1. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry 1972. [in Russian]

Halide precursors

Niobium Fluoride NbF5

  • Melting point: 78.9°C

  • Boiling point: 233.3°C

  • Condensed phase density: 3.29g/cm3 (at 25°C), 2.69g/cm3 (at melting point)

  • Molar mass: 187.9g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Journal of the American Chemical Society, 74(14), 3464-3466.
if  78.9 <= T <= 255:
    P = 10 ** (8.3716 - 2779.3 / (T + 273.15))
if  20 <= T <= 78.9:
    P = 10 ** (14.397 - 4900 / (T + 273.15))

NbF<sub>5</sub> saturated vapor pressure

Niobium Chloride NbCl5

  • Melting point 205°C

  • Boiling point 247.5°C

  • Condensed phase density 2.75 g/cm3 (at 25°C), 2.07 g/cm3 (at melting point)

  • Molar mass 270.2 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Fairbrother, The Chemistry of Niobium and Tantalum, 1967
if 100 <= T <= 205:
    P = 10 ** (11.5-4370  / (T + 273.15))
if  205 <= T <= 254:
    P = 10 ** (8.37-2870 / (T + 273.15))

NbCl<sub>5</sub> saturated vapor pressure

Niobium Bromide NbBr5

  • Melting point 267°C

  • Boiling point 361.6°C

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Fairbrother, The Chemistry of Niobium and Tantalum, 1967
if  267 <= T <= 361:
    P = 10 ** (8.92 - 3850 / (T + 273.15))

NbBr<sub>5</sub> saturated vapor pressure

Bibliography

  1. Fairbrother, F., & Frith, W. C. (1951). 675. The halides of niobium (columbium) and tantalum. Part III. The vapour pressures of niobium (columbium) and tantalum pentafluorides. Journal of the Chemical Society (Resumed), 3051-3056.

  2. Junkins, J. H., Farrar Jr, R. L., Barber, E. J., & Bernhardt, H. A. (1952). Preparation and Physical Properties of Niobium Pentafluoride1. Journal of the American Chemical Society, 74(14), 3464-3466.

  3. Fairbrother, F., Grundy, K. H., & Thompson, A. (1965). 121. The halides of niobium and tantalum. Part VIII. The densities, viscosities, and self-ionisation of niobium and tantalum pentafluorides. Journal of the Chemical Society (Resumed), 761-765.

  4. Alexander, K. M., & Fairbrother, F. (1949). S 48. The halides of columbium (niobium) and tantalum. Part I. The vapour pressures of columbium (niobium) and tantalum pentachlorides and pentabromides. Journal of the Chemical Society (Resumed), S223-S227.

  5. Fairbrother, The Chemistry of Niobium and Tantalum, 1967

Hydrides

Ammonia NH3

  • Melting point: -77.75°C

  • Boiling point: -33.42°C

  • Critical temperature: 132.3°C

  • Critical pressure: 11.3 MPa

  • Molar mass: 17.03 g/mol

NH<sub>3</sub> saturated vapor pressure

Hydrazine N2H4

  • Melting point: 2°C

  • Boiling point: 113.5°C

  • Condensed phase density: 1.008g/cm3 (at 20°C)

  • Molar mass: 32.05 g/mol N<sub>2</sub>H<sub>4</sub> saturated vapor pressure

Bibliography

  1. Stull, D. R. (1947). Inorganic compounds. Industrial & Engineering Chemistry, 39(4), 540-550.

  2. Scott, D. W., Oliver, G. D., Gross, M. E., Hubbard, W. N., & Huffman, H. M. (1949). Hydrazine: Heat capacity, heats of fusion and vaporization, vapor pressure, entropy and thermodynamic functions. Journal of the American Chemical Society, 71(7), 2293-2297.

Halide precursors

Osmium Hexafluoride OsF6

  • CAS Registry Number: 13768-38-2

  • Molar mass: 304.22 g/mol

  • Boiling point: 47.5°C

  • Triple point: 33.4°C, 474.5 Torr

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# J. Chem. Soc., 1961, 1563-1568
if 34.0 <= T <= 47.5:
    P = 10 ** ( 7.470 - 1472.8 / (T + 273.15))
if -0.4 <= T <= 34.0:
    P = 10 ** (8.726 - 1857.7 / (T + 273.15))
if -40.0 <= T <= -0.4:
    P = 10 ** (10.290 - 2284 / (T + 273.15))

OsF<sub>6</sub> saturated vapor pressure

Bibliography

  1. George H. Cady and George B. Hargreaces, The Vapour Pressures of Some Heavy Transition-metal Hexafluorides. J. Chem. Soc., 1961, 1563-1568 https://doi.org/10.1039/JR9610001563

  2. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry, 1972. [in Russian]

Halide precursors

Rhenium Hexaftoride ReF6

  • CAS Registry Number: 10049-17-9

  • Molar mass: 300.197 g/mol

  • Boiling point: 33.8°C

  • Triple point: 18.7°C, 436.5 Torr

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
#  J. Chem. Soc., 1961, 1563-1568
if 19.0 <= T <= 33.8:
    P = 10 ** (7.732 - 1489.1/(T + 273.15))
if -1.9 <= T <= 18.0:
    P = 10 ** (8.539 - 1724.7/(T + 273.15))
if -50 <= T <= -1.9:
    P = 10 ** (10.11 - 2151.2/(T + 273.15))

ReF<sub>6</sub> saturated vapor pressure

Organic precursors

Rhenium carbonyl Ni2(CO)10

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals
P = 10 ** (10.68 - 4152 / (T + 273.15))

Bibliography

  1. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry 1972. [in Russian]

  2. George H. Cady and George B. Hargreaces, The Vapour Pressures of Some Heavy Transition-metal Hexafluorides. J. Chem. Soc., 1961, 1563-1568 doi:10.1039/JR9610001563

Halide precursors

Silicon Tetrachloride SiCl4

  • Melting point: -68.9°C

  • Boiling point: 57.0°C

  • Condensed phase density: 1.48g/cm3 (at 20°C)

  • Molar mass: 169.9 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
if  0 <= T <= 60:
    P = 10 ** (7.64 - 1572 / (T + 273.15))

SiCl<sub>4</sub> saturated vapor pressure

Silicon Tetrafluoride SiF4

  • Melting point: -86.8°C

  • Boiling point: -65.0°C

  • Critical temperature: -14.15°C

  • Critical pressure: 3.75 MPa

  • Molar mass: 169.9 g/mol

Hexachlorodisilane Si2Cl6

  • Melting point: -1°C

  • Boiling point: 144°C

  • Condensed phase density: 1.56g/cm3 (at 25°C)

  • Molar mass: 268.9 g/mol

Saturated vapor pressure.

  # T -- temperature, C
  # P -- saturated  vapor pressure, atm
  # Kelley, U. S. Bur. Mines. Biill. 383, (1935)
  if -1 <= T <= 144:
      P = 10 ** ( 5.838 - 2404 / (T + 273.15))

SiCl<sub>4</sub> saturated vapor pressure

Bibliography

  1. А.А. Furman, Inorganic Chlorides, 1980

  2. Kelley, U. S. Bur. Mines. Biill. 383, (1935).

Halide Precursors

Titanium Tetrachloride TiCl4

  • Melting point: -24.1°C

  • Boiling point: 136.4°C

  • Condensed phase density: 1.727g/cm3 (at 20°C)

  • Molar mass: 189.71 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
#
if  -26 <= T <= 136:
    P = 10 ** ( 7.6825 - 1964 / (T + 273.15))

TiCl<sub>4</sub> saturated vapor pressure

Bibliography

  1. G.P. Luchinsky, Titanium Chemistry, Moscow, "Chemistry", 1971.

Halide precursors

Tantalum Pentafluoride TaF5

  • Melting point: 95.1°C

  • Boiling point: 229.2°C

  • Condensed phase density: 4.98 g/cm3 (at 15°C), 3.88 g/cm3 (at melting point)

  • Molar mass: 275.9 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Fairbrother, F., & Frith, W. C. (1951) Journal of the Chemical Society (Resumed), 3051-3056.
if 95.1 <= T <= 229.2:
    P = 10 ** ( 8.524 - 2834 / (T + 273.15))

TaF<sub>5</sub> saturated vapor pressure

Tantalum Pentachloride TaCl5

  • CAS Registry Number: 7721-01-9

  • Melting point: 216.5°C

  • Boiling point: 236°C

  • Condensed phase density: 3.68 g/cm3 (at 28°C), 2.68 g/cm3 (at melting point)

  • Molar mass: 358.2 g/mol

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Fairbrother, The Chemistry of Niobium and Tantalum, 1967
if  140 <= T <= 175:
    P = 10 ** (13.36-5240  / (T + 273.15))
if  175 <= T <= 220:
    P = 10 ** (12.42-4820  / (T + 273.15))
if  220 <= T <= 240:
    P = 10 ** ( 8.68-2970 / (T + 273.15))

TaCl<sub>5</sub> saturated vapor pressure

Tantalum Pentabromide TaBr5

  • Melting point: 280°C

  • Boiling point: 348.8°C

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Fairbrother, The Chemistry of Niobium and Tantalum, 1967

if  200 \<= T \<= 280:
  P = 10 ** ( 12.42 - 5630 / (T + 273.15))
if  280 \<= T \<= 348.8:
  P = 10 ** (8.11 - 3260  / (T + 273.15))

TaBr<sub>5</sub> saturated vapor pressure

Bibliography

  1. Fairbrother, F., Grundy, K. H., & Thompson, A. (1965). 121. The halides of niobium and tantalum. Part VIII. The densities, viscosities, and self-ionisation of niobium and tantalum pentafluorides. Journal of the Chemical Society (Resumed), 761-765.

  2. Fairbrother, F., & Frith, W. C. (1951). 675. The halides of niobium (columbium) and tantalum. Part III. The vapour pressures of niobium (columbium) and tantalum pentafluorides. Journal of the Chemical Society (Resumed), 3051-3056.

  3. Alexander, K. M., & Fairbrother, F. (1949). S 48. The halides of columbium (niobium) and tantalum. Part I. The vapour pressures of columbium (niobium) and tantalum pentachlorides and pentabromides. Journal of the Chemical Society (Resumed), S223-S227.

  4. Fairbrother, The Chemistry of Niobium and Tantalum, 1967

  5. H. Schafer, W. Loose, B. Monheim, Z. anorg. allg. Chem. 522 (1985) 99-107

Halide precursors

Tungsten Hexachloride WCl6

  • CAS Registry Number: 13283-01-7

  • Melting point: 281.5°C

  • Boiling point: 348°C

  • Condensed phase density: 3.52 g/cm3 (at 25°C)

  • Molar mass: 396.57 g/mol

  • Heat of vaporization: 14.9 kcal/mol

  • Heat of sublimation, beta-solid: 16.4 kcal/mol

  • Heat of sublimation, alpha-solid: 18.3 kcal/mol

  • Vaporization entropy: 24.3 e.u. (330°C)

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Stevenson, F. D., Wicks, C. E., & Block, F. E. (1963)
# Liquid
if 281.5 <= T <= 325:
  P = 10 ** (8.194 - 3253/(T+273.15))
# beta-solid
if 230.0 <= T <= 281.5:
  P = 10 ** (8.794 - 3588/(T+273.15))
# alpha-solid
if 185.0 <= T <= 230:
  P = 10 ** (9.615 - 3996/(T+273.15))

WCl<sub>6</sub> saturated vapor pressure

Tungsten Hexafluoride WF6

  • CAS Registry Number: 7783-82-6

  • Melting point: 2.5°C

  • Boiling point: 17.3°C

  • Condensed phase density: 4.56 g/cm3 (solid T < -8.5°C), 3.99 g/cm3 (solid at 0°C), 3.4 g/cm3 (liquid at 20°C)

  • Molar mass: 297.84 g/mol

  • Triple point: 2.0°C, 413.2 Torr

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# J. Chem. Soc., 1961, 1563-1568
if -60 <= T <= -8.2:
    P = 10 ** (9.951 - 2006/(T + 273.15))
if -8.2 <= T <= 2.0:
    P = 10 ** (8.758 - 1689.9/(T + 273.15))
if 2.0 <= T <= 17.1:
    P = 10 ** (7.635 - 1380.5/(T + 273.15))

WF<sub>6</sub> saturated vapor pressure

Organic precursors

Tungsten hexacarbonyl W(CO)6

Saturated vapor pressure.

# T -- temperature, C
# P -- saturated vapor pressure, Torr
# V.G. Syrkin. Chemistry and Technology of Carbonyl Metals
P = 10 ** (11.523 - 3872 / (T + 273.15))

W(CO)6 saturated vapor pressure

Bibliography

  1. George H. Cady and George B. Hargreaces, The Vapour Pressures of Some Heavy Transition-metal Hexafluorides. J. Chem. Soc., 1961, 1563-1568 doi:10.1039/JR9610001563

  2. Stevenson, F. D., Wicks, C. E., & Block, F. E. (1963). Vapor pressure of tungsten (VI) chloride and hafnium (IV) iodide by a metal diaphragm technique (No. BM-RI-6367). Bureau of Mines, Albany, OR (USA). Albany Metallurgy Research Center.

  3. Siegel, S., & Northrop, D. A. (1966). X-ray diffraction studies of some transition metal hexafluorides. Inorganic Chemistry, 5(12), 2187-2188

  4. Alyea, E. D., Gallagher, L. B., Mullens, J. H., & Teem, J. M. (1957). A WF6 bubble chamber. Il Nuovo Cimento (1955-1965), 6(6), 1480-1488.

  5. V.G. Syrkin. Chemistry and Technology of Carbonyl Metals. Moscow, Chemistry 1972. [in Russian]

Halide precursors

Vanadium pentafluoride VF5

  • Melting point: 19.5°C

  • Boiling point: 48°C

  • Condensed phase density: 2.48 g/cm3 (at 20°C)

  • Molar mass: 145.9 g/mol

# T -- temperature, C
# P -- saturated  vapor pressure, Torr
# Journal of the American Chemical Society, 79(19), 5167-5168
if  24 <= T <= 58:
    P = 10 ** ( 11.7640 - 3.38743e3 / (T + 273.15) + 1.7191e5 / (T + 273.15)**2)
if  58 <= T <= 86:
    P = 10 ** ( 1.0020 + 3.65386e3 / (T + 273.15) + 9.7935e5 / (T + 273.15)**2)

VF<sub>5</sub> saturated vapor pressure

Bibliography

  1. Clark, H. C., & Emeléus, H. J. (1957). 406. Some physical and chemical properties of vanadium pentafluoride. Journal of the Chemical Society (Resumed), 2119-2122. https://doi.org/10.1039/JR9570002119

  2. Trevorrow, L. E., Fischer, J., & Steunenberg, R. K. (1957). The Preparation and Properties of Vanadium Pentafluoride1. Journal of the American Chemical Society, 79(19), 5167-5168

  3. Cavell, R. G., & Clark, H. C. (1963). DENSITY, VISCOSITY, AND SURFACE TENSION OF VANADIUM PENTAFLUORIDE. JOURNAL OF THE CHEMICAL SOCIETY, (AUG), 4261.

  4. Simons, J. H., & Powell, M. G. (1945). Properties of vanadium tetrachloride. Journal of the American Chemical Society, 67(1), 75-77.

Halide precursors

Zirconium Tetrachloride ZrCl4

  • Melting point: 437°C (21.8 atm)

  • Sublimation temperature: 315°C (1 atm)

  • Condensed phase density: 2.8g/cm3 (at 25°C)

  • Molar mass: 233.04 g/mol

# T -- temperature, C
# P -- saturated  vapor pressure, Pa
# Thermochimica acta 244 (1994): 249-256.
if  130 <= T <= 245:
    P = 10 ** ( 13.51 -5164.95 / (T + 273.15))

ZrCl<sub>4</sub> saturated vapor pressure

Bibliography

  1. Tangri, R. P., and D. K. Bose. "Vapour pressure measurement of zirconium chloride and hafnium chloride by the transpiration technique." Thermochimica acta 244 (1994): 249-256.

Posts

Basic Jekyll site

Basic Jekyll site

Create a Jekyll site template:

gem install jekyll bundler
jekyll new my-new-site
cd my-new-site
bundle exec jekyll serve

Asciidoc

Default config supports only the Markdown; Asciidoc requires a plugin.

Add jekyll-asciidoc and asciidoctor-diagram on Gemfile and _config.yml:

Gemfile.

group :jekyll_plugins do
  gem 'jekyll-asciidoc'
  gem 'asciidoctor-diagram'
  gem "jekyll-feed", "~> 0.12"
end

_config.yml.

plugins:
- jekyll-asciidoc

Minima theme from github

Adding custom scripts to _includes/custom-head.html allows adding them globally to all the site pages without editing the theme. The current version of the "minima" theme (2.5) does not support including custom-head.html (https://github.com/jekyll/minima/issues/472), and the GitHub master branch is required.

In Gemfile replace the 2.5 version

gem "minima", "~> 2.5"

with githuib master branch:

gem "minima", github: "jekyll/minima"

Latex math equations

  1. Add MathJax scripts to _includes/custom-head.html to include them in all the pages of the site

  2. Add :eqnums: and :stem: latexmath to the header of asciidoc files.

_includes/custom-head.html.

<script type="text/x-mathjax-config">
MathJax.Hub.Config({
    TeX: {
    equationNumbers: { autoNumber: "AMS" },
    tagSide: "right"
    },
    tex2jax: {
    inlineMath: [ ['$','$'], ["\\(","\\)"] ],
    displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
    processEscapes: true
    }
});
MathJax.Hub.Register.StartupHook("TeX AMSmath Ready", function () {
    MathJax.InputJax.TeX.Stack.Item.AMSarray.Augment({
    clearTag() {
        if (!this.global.notags) {
        this.super(arguments).clearTag.call(this);
        }
    }
    });
});
</script>
<script type="text/javascript" charset="utf-8"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS_CHTML">
</script>

_posts/2020-01-01-my-example-post-with-equations.adoc.

= My asciidoc post title
:eqnums:
:stem: latexmath
stem:[\sqrt 4 = 2]

\(\sqrt 4 = 2\)

latexmath:[$$C = \alpha + \beta Y^{\gamma} + \epsilon$$]

\(C = \alpha + \beta Y^{\gamma} + \epsilon\)

This is a numbered equation \eqref{myequation}
[stem]
++++
\begin{equation}\label{myequation}
c^2 = a^2 + b^2 + 5
\end{equation}
++++

This is a numbered equation 1 \[ c^2 = a^2 + b^2 + 5~(1) \]

PlantUML diagrams

Set default output directory for diagram images, generated from asciidoc:

_config.yml.

asciidoctor:
  attributes:
    - imagesdir=/assets/images/
    - imagesoutdir=assets/images
[plantuml, diagram-classes, png]
....
A --|> B : ablink
B --|> C : bclink
A --|> C : aclink
....

diagram